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THE LAWS OF VIBRATING STRINGS | &

OBJECT: To study the properties of a vibrating string, and
to determine the frequency of a tuning fork by tuning a
string to unison with it.

METHOD: A piano wire stretched over a sounding box is
tuned to unison with a tuning fork of known frequency.
The tension of the wire is adjusted by means of weights
suspended from it and the length of the vibrating segment
is adjusted by means of movable bridges. With the tension
constant the wire is tuned to several forks in succession
by making adjustments of the length. The relationship
between frequency and length is shown by a graph of
frequency versus the reciprocal of the length. A second
set of observations is made in which the tension is varied,
the length being kept constant. The square of the fre-
quency is plotted against the tension. The frequencies
computed from measured values of the length, tension and
mass per unit length are compared with the wvalues
stamped on the forks.

THEORY: The vibration of a stretched string is a case of
standing waves. When a string is set into vibration by
plucking or bowing, the train of waves which is generated
is reflected at the fixed ends of the string and travels to
and fro with gradually diminishing amplitude. Thus there
are present, simultaneously, waves travelling in opposite
directions after reflection at the two ends. The vibration
of the string is a composite motion resulting from the
combined effect of the oppositely directed wave trains.
The interaction of these oppositely directed wave trains
is such that at certain equally spaced positions the dis-
placements produced by the two waves are equal in mag-
nitude and opposite in phase at all times, with the result
that the two effects cancel each other and the resultant
disturbance is always zero. These positions of no disturb-
ance are called nodes. Midway between the nodes the
phase relations are such that the resultant displacement
varies periodically from zero to twice that due to one
wave, and the disturbance is a maximum. These regions
are called antinodes. The vibrating segments of string be-
tween consecutive nodes are called loops. The amplitude
of vibration increases gradually from zero at a node to
maximum at an antinode. The succession of nodes and
antinodes is called a standing wave. The standing waves
in a stretched string vibrating in two segments are repre-
sented diagrammatically in Fig. 1 in which the solid line
represents the form of the string at an instant of max-
imum displacement and the dotted line represents the
configuration one half-period later when the displace-
ments are reversed. The internodal distance is repre-
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sented by 1. From the fact that the phase of the disturb-
ance in the antinode A; is opposite to that in A, it is
evident that the wave length A (distance between succes-
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Fig. 1. Standing wave in a string.

sive particles in the same phase) includes two internodal
distances. This relationship is an important one in the
experimental study of standing waves in any medium.

The frequency of vibration of a string (which deter-
mines the pitch of the note emitted) depends upon the
length of the string, its mass per unit length, and the ten-
sion to which it is subjected. To deduce the relationship
among these quantities, begin with the fundamental equa-
tion of wave motion

V=mnx (1)

where V is the velocity of the wave, n the frequency and
A the wave length. The validity of this equation is ap-
parent when it is considered that if, in one second, n
waves of length N\ are stretched out end to end, their
combined length is nA and the first wave must have
travelled a distance nA from the source.

The expression for the velocity of a transverse wave
in a cord can be obtained from a consideration of Fig. 2.
The drawing represents a section of a cord in which a
wave is travelling from right to left with a velocity V.
Since it is the relative motion of the wave with respect
to the string which is significant, the discussion will be
simplified (and the situation essentially unaltered) if the
string is regarded as moving to the right with the same
numerical velocity, the wave remaining stationary. This
situation could be achieved physically by drawing the
cord through a glass tube curved to fit the wave form.
Consider a section of the cord AB so short that it may be
regarded as the arc of a circle. Let the tension at A and B
(which is directed along the cord at these points) be
represented by T. The resultant of these two forces is a
centrally directed force F, on the segment AB (see the
vector diagram Fig. 2b). As the cord passes from A to B
its velocity changes in direction, but not in magnitude,
as a result of centripetal acceleration due to the force F,
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Fig. 2. Velocity of a transverse wave in a string.

(Fig. 2c¢). Since both tension and velocity are parallel
to the cord, by similar triangles
T |4

F. = at @

By Newton’s second law F¢=msa, where m is-the mass
per unit length, s the length of the segment and a the cen-
tripetal acceleration. Also the distance travelled from A
to B is s = Vt. Substituting these relationships in Eq. (2)

T __V
maVt ~  at @)

V=\/_L (4)
m

If such a cord, enclosed in a glass tube bent in an arc AB,
were stationary and under tension T, there would be a
normal force on the walls of the tube tending to straighten
it out; but if the cord is given a velocity, centrifugal action
neutralizes this force and the cord is able to maintain its
configuration without the aid of the tube. Eq. (4) yields
the velocity in centimeters per second when T is in dynes
and m is in grams per centimeter length.

Substituting the value of V from Eq. (4) in Eq. (1) and
solving for the frequency

-1 | T
TR \/_m_ ®

Substituting A = 21

__1 T
"= N Tm ®)

from which

The maximum possible value for the internodal distance 1
is the length of the cord. Thus the lowest possible fre-
quency is produced when the string vibrates in one seg-
ment. This minimum frequency is called the fundamental
frequency of the string. Frequencies greater than the
fundamental are called overtones. Overtones, whose fre-
quencies are integer multiples of the fundamental, are
called harmonics. From the symmetry of a string fixed

at both ends it is apparent that all the harmonics are
possible.

APPARATUS: The apparatus employed in this experiment
consists of a sonometer, a set of weights, several tuning
forks, a rubber hammer and a meter stick. The sonom-
eter, two forms. of which are illustrated in Figs. 3 and 4,
consists essentially of one or more piano wires stretched
over a sounding box. The tension in the wires is adjusted
by means of weights suspended from
them, and the effective length is regu-
lated by movable bridges. In some
models the tension is adjusted by
means of screws, the value of the ten-
sion being indicated by spring bal-
ances attached to the wires.

PROCEDURE:
Experimental:

Part 1. Relation between frequency
and length. Locate the bridges so as to
utilize most of the length of one of the
wires. Sound the fork of lowest fre-
quency by striking it with the rubber
hammer, and add weights to the
string until its frequency is nearly the
same as that of the fork. Caution:
Never strike a tuning fork with a
metal object nor allow the prongs to
strike a hard body while vibrating.
By adjusting one of the bridges, tune
the string exactly in unison with the
fork. The inexperienced student will
have to practice making this adjust-
ment until he learns to detect a slight
difference in pitch. With the ear held
close to the fork and the string, pluck
the latter gently and listen for beats.
(Violent plucking gives rise to har-
monics and spurious vibrations which
make tuning difficult.) As the tuning
becomes closer the frequency of beats
diminishes, and when the two are in
unison the beats disappear. The stu-
dent whose ear is unreliable may fa-
cilitate tuning by the following
method. Make a rider of a small piece
of paper folded in the form of a V
and place it on the wire at the mid-
point. Sound the fork and place its
base firmly in contact with the sound-
ing box. Do not pluck the string.
When the string is in tune with the
fork, the forced vibrations set up in
the sounding box by the vibrating
fork will be taken up by the string
and the rider will be displaced.

When the adjustment has been
made, measure the length of the

Fig. 3. S ter, table del

Fig. 4. Sonometer,
wall model
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string between the bridges. Repeat the determination with
the fork of next lowest frequency. Continue in this way
until a total of four observations has been made. Record
the data as indicated in Table I.

Part Il. Relation between frequency and tension. Keeping
the length constant at the last value used in Part I, reduce
the tension until the string is in tune with the fork of next
lowest frequency, and so on for all the forks. Record the
data.

Weigh a measured length of the same kind of wire and
determine the mass per unit length in grams per centi-
meter.

Optional Experimental:

Part Ill. Relation between tension and mass per unit
length for a constant frequency. For this part of the experi-
ment the sonometer must be equipped with twn wires of
different mass per unit length. Apply a known weight to
one wire and adjust the tension of the other until it is in
tune with the first one. Compare the ratio of the tensions
with the ratio of the masses per unit length.

Interpretation of Data: From the data of Part I plot the

frequency m as ordinate against the reciprocal length 'll

as abscissa.

From the data of Part II plot the square of the fre-
quency n2 as ordinate and the tension T as abscissa.

For all observations compute the frequency by Eq. (6)
and compare with the value marked on the fork.

QUESTIONS: 1. Describe a simple method of using the
sonometer to determine the frequency of a tuning fork by
comparison with a standard fork.

2. Two wires A and B are made of the same material.
A has twice the length and twice the radius of B. What is
the numerical ratio of their frequencies when under the
same tension?

3. Compare the tensions of a brass wire and an alumi-
num wire of the same length and cross section when
tuned in unison.

4. A string 1 meter iong, having a mass per unit length
of 0.4 gm/cm, is under a tension of 5 kilograms. What is
the wave length in air of the note emitted?

TABLE |
Frequency
-1
Length Tension sec
cm gm—uwt
marked computed

No. 71990—S32ab
Printed in U. S. A.

o -



