Vacuum Cannon Calculations

4.December. 2009

Assumptions

These calculations make several (incorrect) assumptions:

1. There is no friction at all (including air resistance) affecting the ping-pong ball.
2. The ping-pong ball undergoes constant (uniform) acceleration.
3. The ping-pong ball's velocity is unaffected by breaking through the tape when exiting the barrel.

Numerical Values

Cannon length: $x=121$ inches $=3.07$ meters.
Cannon bore diameter: $d_{\text {bore }}=1.6$ inches .
Ping-pong ball diameter: $d=40 \mathrm{~mm} \rightarrow A=\pi(20 \mathrm{~mm})^{2}=1.256 \times 10^{3} \mathrm{~mm}^{2}=1.256 \times 10^{-3} \mathrm{~m}^{2}$.
Ping-pong ball mass: $m=2.5 \mathrm{grams}=2.5 \times 10^{-3} \mathrm{~kg}$.
Atmospheric pressure: $P=1 \mathrm{~atm}=14.7 \mathrm{psi}=101,325 \mathrm{~N} / \mathrm{m}^{2}$.
Aluminum can mass: $m_{\text {can }}=13.2$ grams.

Calculations

Pressure $=$ Force $/$ Area or $\mathrm{F}=\mathrm{P} \cdot \mathrm{A}:$
$F=P \cdot A=\left(101,325 N / m^{2}\right)\left(1.256 \times 10^{-3} m^{2}\right)=127.3 N$.
Force $=$ mass \cdot acceleration or $\mathrm{a}=\mathrm{F} / \mathrm{m}$:
$a=F / m=(127.3 N) /\left(2.5 \times 10^{-3} k g\right)=5.09 \times 10^{4} \mathrm{~m} / \mathrm{s}^{2}=5,192 \mathrm{~g}$.
Assuming a constant acceleration a over a distance $x, v_{f}^{2}=v_{i}^{2}+2 a x$, but $v_{i}=0$:
$v_{f}^{2}=2 a x$ or $v_{f}=\sqrt{2 a x}=\sqrt{2\left(5.09 \times 10^{4} \mathrm{~m} / \mathrm{s}^{2}\right)(3.07 \mathrm{~m})}=559 \mathrm{~m} / \mathrm{s}=1834 \mathrm{ft} / \mathrm{s} \approx$ Mach 1.6.
The kinetic energy of the ping-pong ball is $\mathrm{E}=\frac{1}{2} m v^{2}$:
$E=\frac{1}{2} m v^{2}=\frac{1}{2}\left(2.5 \times 10^{-3} \mathrm{~kg}\right)(559 \mathrm{~m} / \mathrm{s})^{2}=391$ Joules.

Notes

For comparison, a . 22 LR rifle has a typical muzzle energy of 159 Joules and a .38 Special pistol has a typical muzzle energy of 420 Joules (source: http://en.wikipedia.org/wiki/Muzzle_energy). The ping-pong ball isn't going nearly as fast as calculated. These calculations only serve as an exercise.

